Search results for " Gauge integral"
showing 3 items of 3 documents
Relations among Gauge and Pettis integrals for cwk(X)-valued multifunctions
2019
The aim of this paper is to study relationships among "gauge integrals" (Henstock, Mc Shane, Birkhoff) and Pettis integral of multifunctions whose values are weakly compact and convex subsets of a general Banach space, not necessarily separable. For this purpose we prove the existence of variationally Henstock integrable selections for variationally Henstock integrable multifunctions. Using this and other known results concerning the existence of selections integrable in the same sense as the corresponding multifunctions, we obtain three decomposition theorems. As applications of such decompositions, we deduce characterizations of Henstock and ${\mathcal H}$ integrable multifunctions, toget…
Multifunctions determined by integrable functions
2019
Integral properties of multifunctions determined by vector valued functions are presented. Such multifunctions quite often serve as examples and counterexamples. In particular it can be observed that the properties of being integrable in the sense of Bochner, McShane or Birkhoff can be transferred to the generated multifunction while Henstock integrability does not guarantee it.
Integration of multifunctions with closed convex values in arbitrary Banach spaces
2018
Integral properties of multifunctions with closed convex values are studied. In this more general framework not all the tools and the technique used for weakly compact convex valued multifunctions work. We pay particular attention to the "positive multifunctions". Among them an investigation of multifunctions determined by vector-valued functions is presented. Finally, decomposition results are obtained for scalarly and gauge-defined integrals of multifunctions and a full description of McShane integrability in terms of Henstock and Pettis integrability is given.